
1

Outline
 What is shell?

 Basic

 Syntax
 Lists

 Functions

 Command Execution

 Here Documents

 Debug

 Regular Expression

 Find

2

Why Shell?
 The commercial UNIX used Korn Shell

 For Linux, the Bash is the default

 Why Shell?
 For routing jobs, such as system administration, without writing

programs

 However, the shell script is not efficient, therefore, can be used for
prototyping the ideas

 For example,
% ls –al | more (better format of listing directory)

% man bash | col –b | lpr (print man page of man)

3

What is Shell?
 Shell is the interface between end user and the Linux

system, similar to the commands in Windows

 Bash is installed as in /bin/sh

 Check the version

% /bin/sh --version

4

Kernel

Other
programs

X window
bash

csh

Pipe and Redirection
 Redirection (< or >)

% ls –l > lsoutput.txt (save output to lsoutput.txt)

% ps >> lsoutput.txt (append to lsoutput.txt)

% more < killout.txt (use killout.txt as parameter to

more)

% kill -l 1234 > killouterr.txt 2 >&1 (redirect to the

same file)

% kill -l 1234 >/dev/null 2 >&1 (ignore std output)

 Pipe (|)
 Process are executed concurrently

% ps | sort | more

% ps –xo comm | sort | uniq | grep –v sh | more

% cat mydata.txt | sort | uniq | > mydata.txt (generates

an empty file !)

5

Shell as a Language
 We can write a script containing many shell commands
 Interactive Program:

 grep files with POSIX string and print it
% for file in *

> do

> if grep –l POSIX $file

> then

> more $file

 fi

 done

Posix

There is a file with POSIX in it

 ‘*’ is wildcard
% more `grep –l POSIX *`

% more $(grep –l POSIX *)

% more –l POSIX * | more

6

Writing a Script
 Use text editor to generate the “first” file

#!/bin/sh

first

this file looks for the files containing POSIX

and print it

for file in *

do

 if grep –q POSIX $file

 then

 echo $file

 fi

done

exit 0
 % /bin/sh first

 % chmod +x first

 %./first (make sure . is include in PATH parameter)

7

exit code, 0 means successful

Syntax
 Variables

 Conditions

 Control

 Lists

 Functions

8

Variables
 Variables needed to be declared, note it is case-sensitive (e.g. foo, FOO,

Foo)
 Add ‘$’ for storing values

% salutation=Hello

% echo $salutation

Hello

% salutation=7+5

% echo $salutation

7+5

% salutation=“yes dear”

% echo $salutation

yes dear

% read salutation

Hola!

% echo $salutation

Hola!

9

Quoting
 Edit a “vartest.sh” file
#!/bin/sh

myvar=“Hi there”

echo $myvar

echo “$myvar”

echo `$myvar`

echo \$myvar

echo Enter some text

read myvar

echo ‘$myvar’ now equals $myvar

exit 0

10

Output
Hi there

Hi there

$myvar

$myvar

Enter some text

Hello world

$myvar now equals Hello world

Environment Variables
 $HOME home directory

 $PATH path

 $PS1 第一層提示符號 (normally %)

 $PS2 第二層提示符號 (normally >)

 $$ process id of the script

 $# number of input parameters

 $0 name of the script file

 $IFS separation character (white space)

 Use ‘env’ to check the value

11

Parameter
% IFS = ` `

% set foo bar bam

% echo “$@”

foo bar bam

% echo “$*”

foo bar bam

% unset IFS

% echo “$*”

foo bar bam

12

doesn’t matter IFS

Parameter

13

%./try_var foo bar baz

Hello

The program ./try_var is now running

The second parameter was bar

The first parameter was foo

The parameter list was foo bar baz

The user’s home directory is /home/ychuang

Please enter a new greeting

Hola

Hola

The script is now complete

Edit file ‘try_var’
#!/bin/sh

salutation=“Hello”

echo $salutation

echo “The program $0 is now running”

echo “The parameter list was $*”

echo “The second parameter was $2”

echo “The first parameter was $1”

echo “The user’s home directory is $HOME”

echo “Please enter a new greeting”

read salutation

echo $salutation

echo “The script is now complete”

exit 0

Condition
 test or ‘ [‘

if test –f fred.c

then

...

fi

14

If [-f fred.c]

then

...

fi

if [-f fred.c];then

...

fi

expression1 –eq expression2

expression1 –ne expression2

expression1 –gt expression2

expression1 –ge expression2

expression1 -lt expression2

expression1 –le expression2

!expression

-d file if directory

-e file if exist

-f file if file

-g file if set-group-id

-r file if readable

-s file if size >0

-u file if set-user-id

-w file if writable

-x file if executable String1 = string2

String1 != string 2

-n string (if not empty string)

-z string (if empty string)

need space !

Control Structure
Syntax

if condition

then

 statement

else

 statement

fi

15

#!/bin/sh

echo “Is it morning? Please answer yes or no”

read timeofday

if [$timeofday = “yes”]; then

 echo “Good morning”

else

 echo “Good afternoon”

fi

exit 0

Is it morning? Please answer yes or no

yes

Good morning

Condition Structure

16

#!/bin/sh

echo “Is it morning? Please answer yes or no”

read timeofday

if [$timeofday = “yes”]; then

 echo “Good morning”

elif [$timeofday = “no”]; then

 echo “Good afternoon”

else

 echo “Sorry, $timeofday not recongnized. Enter yes or no”

 exit 1

fi

exit 0

Condition Structure

17

#!/bin/sh

echo “Is it morning? Please answer yes or no”

read timeofday

if [“$timeofday” = “yes”]; then

 echo “Good morning”

elif [$timeofday = “no”]; then

 echo “Good afternoon”

else

 echo “Sorry, $timeofday not recongnized. Enter yes or no”

 exit 1

fi

exit 0

If input “enter” still returns Good morning

Loop Structure

18

Syntax

for variable

do

 statement

done

#!/bin/sh

for foo in bar fud 43

do

 echo $foo

done

exit 0

bar

fud

43

How to output as bar fud 43?

Try change for foo in “bar fud 43”

This is to have space in variable

Loop Structure
 Use wildcard ‘*’

#!/bin/sh

for file in $(ls f*.sh); do

 lpr $file

done

exit 0

Print all f*.sh files

19

Loop Structure

20

Syntax

while condition

do

 statement

done

#!/bin/sh

for foo in 1 2 3 4 5 6 7 8 9 10

do

 echo “here we go again”

done

exit 0

#!/bin/sh

foo = 1

while [“$foo” –le 10]

do

 echo “here we go again”

 foo = $foo(($foo+1))

done

exit 0

Syntax
 until condition

 do

 statement

 done

Note: condition is
Reverse to while
How to re-write
previous sample?

Case Statement
Syntax
case variable in\

 pattern [| pattern] …) statement;;

 pattern [| pattern] …) statement;;

 …

esac

21

#!/bin/sh

echo “Is it morning? Please answer yes or no”

read timeofday

case “$timeofday” in

 yes) echo “Good Morning”;;

 y) echo “Good Morning”;;

 no) echo “Good Afternoon”;;

 n) echo “Good Afternoon”;;

 *) echo “Sorry, answer not recongnized”;;

esac

exit 0

Case Statement
 A much “cleaner” version

22

#!/bin/sh

echo “Is it morning? Please answer yes or no”

read timeofday

case “$timeofday” in

 yes | y | Yes | YES) echo “Good Morning”;;

 n* | N*) echo “Good Afternoon”;;

 *) echo “Sorry, answer not recongnized”;;

esac

exit 0

But this has a problem, if we enter ‘never’ which obeys n*
case and prints “Good Afternoon”

Case Statement

23

#!/bin/sh

echo “Is it morning? Please answer yes or no”

read timeofday

case “$timeofday” in

 yes | y | Yes | YES)

 echo “Good Morning”

 echo “Up bright and early this morning”

 ;;

 [nN]*)

 echo “Good Afternoon”;;

 *)

 echo “Sorry, answer not recongnized”

 echo “Please answer yes of no”

 exit 1

 ;;

esac

exit 0

List
 AND (&&)

 statement1 && statement2 && statement3 …

24

#!/bin/sh

touch file_one

rm –f file_two

if [-f file_one] && echo “Hello” && [-f file_two] && echo “ there”

then

 echo “in if”

else

 echo “in else”

fi

exit 0

Output

Hello

in else

Check if file exist if not then create one

Remove a file

List
 OR (||)

 statement1 || statement2 || statement3 …

25

#!/bin/sh

rm –f file_one

if [-f file_one] || echo “Hello” || echo “ there”

then

 echo “in if”

else

 echo “in else”

fi

exit 0

Output

Hello

in else

Statement Block
 Use multiple statements in the same place

26

get_comfirm && {

 grep –v “$cdcatnum” $stracks_file > $temp_file

 cat $temp_file > $tracks_file

 echo

 add_record_tracks

}

Function
 You can define functions for “structured” scripts
 function_name() {

 statements

 }

27

#!/bin/sh

foo() {

 echo “Function foo is executing”

}

echo “script starting”

foo

echo “script ended”

exit 0

Output

script starting

Function foo is executing

Script ended

You need to define a function before using it
The parameters $*,$@,$#,$1,$2 are replaced by local value
if function is called and return to previous after function is finished

Function

28

#!/bin/sh

sample_text=“global variable”

foo() {

 local sample_text=“local variable”

 echo “Function foo is executing”

 echo $sample_text

}

echo “script starting”

echo $sample_text

foo

echo “script ended”

echo $sample_text

exit 0

define local
variable

Output?

 Check the
scope of
the
variables

Function
 Use return to pass a result

29

#!/bin/sh

yes_or_no() {

 echo “Is your name $* ?”

 while true

 do

 echo –n “Enter yes or no:”

 read x

 case “$x” in

 y | yes) return 0;;

 n | no) return 1;;

 *) echo “Answer yes or

no”

 esac

 done

}

echo “Original parameters are $*”

if yes_or_no “$1”

then

 echo “Hi $1, nice name”

else

 echo “Never mind”

fi

exit 0

 Output

./my_name John Chuang

Original parameters are John Chuang

Is your name John?

Enter yes or no: yes

Hi John, nice name.

