
1

Outline
 What is shell?

 Basic

 Syntax
 Lists

 Functions

 Command Execution

 Here Documents

 Debug

 Regular Expression

 Find

2

Why Shell?
 The commercial UNIX used Korn Shell

 For Linux, the Bash is the default

 Why Shell?
 For routing jobs, such as system administration, without writing

programs

 However, the shell script is not efficient, therefore, can be used for
prototyping the ideas

 For example,
% ls –al | more (better format of listing directory)

% man bash | col –b | lpr (print man page of man)

3

What is Shell?
 Shell is the interface between end user and the Linux

system, similar to the commands in Windows

 Bash is installed as in /bin/sh

 Check the version

% /bin/sh --version

4

Kernel

Other
programs

X window
bash

csh

Pipe and Redirection
 Redirection (< or >)

% ls –l > lsoutput.txt (save output to lsoutput.txt)

% ps >> lsoutput.txt (append to lsoutput.txt)

% more < killout.txt (use killout.txt as parameter to

more)

% kill -l 1234 > killouterr.txt 2 >&1 (redirect to the

same file)

% kill -l 1234 >/dev/null 2 >&1 (ignore std output)

 Pipe (|)
 Process are executed concurrently

% ps | sort | more

% ps –xo comm | sort | uniq | grep –v sh | more

% cat mydata.txt | sort | uniq | > mydata.txt (generates

an empty file !)

5

Shell as a Language
 We can write a script containing many shell commands
 Interactive Program:

 grep files with POSIX string and print it
% for file in *

> do

> if grep –l POSIX $file

> then

> more $file

 fi

 done

Posix

There is a file with POSIX in it

 ‘*’ is wildcard
% more `grep –l POSIX *`

% more $(grep –l POSIX *)

% more –l POSIX * | more

6

Writing a Script
 Use text editor to generate the “first” file

#!/bin/sh

first

this file looks for the files containing POSIX

and print it

for file in *

do

 if grep –q POSIX $file

 then

 echo $file

 fi

done

exit 0
 % /bin/sh first

 % chmod +x first

 %./first (make sure . is include in PATH parameter)

7

exit code, 0 means successful

Syntax
 Variables

 Conditions

 Control

 Lists

 Functions

8

Variables
 Variables needed to be declared, note it is case-sensitive (e.g. foo, FOO,

Foo)
 Add ‘$’ for storing values

% salutation=Hello

% echo $salutation

Hello

% salutation=7+5

% echo $salutation

7+5

% salutation=“yes dear”

% echo $salutation

yes dear

% read salutation

Hola!

% echo $salutation

Hola!

9

Quoting
 Edit a “vartest.sh” file
#!/bin/sh

myvar=“Hi there”

echo $myvar

echo “$myvar”

echo `$myvar`

echo \$myvar

echo Enter some text

read myvar

echo ‘$myvar’ now equals $myvar

exit 0

10

Output
Hi there

Hi there

$myvar

$myvar

Enter some text

Hello world

$myvar now equals Hello world

Environment Variables
 $HOME home directory

 $PATH path

 $PS1 第一層提示符號 (normally %)

 $PS2 第二層提示符號 (normally >)

 $$ process id of the script

 $# number of input parameters

 $0 name of the script file

 $IFS separation character (white space)

 Use ‘env’ to check the value

11

Parameter
% IFS = ` `

% set foo bar bam

% echo “$@”

foo bar bam

% echo “$*”

foo bar bam

% unset IFS

% echo “$*”

foo bar bam

12

doesn’t matter IFS

Parameter

13

%./try_var foo bar baz

Hello

The program ./try_var is now running

The second parameter was bar

The first parameter was foo

The parameter list was foo bar baz

The user’s home directory is /home/ychuang

Please enter a new greeting

Hola

Hola

The script is now complete

Edit file ‘try_var’
#!/bin/sh

salutation=“Hello”

echo $salutation

echo “The program $0 is now running”

echo “The parameter list was $*”

echo “The second parameter was $2”

echo “The first parameter was $1”

echo “The user’s home directory is $HOME”

echo “Please enter a new greeting”

read salutation

echo $salutation

echo “The script is now complete”

exit 0

Condition
 test or ‘ [‘

if test –f fred.c

then

...

fi

14

If [-f fred.c]

then

...

fi

if [-f fred.c];then

...

fi

expression1 –eq expression2

expression1 –ne expression2

expression1 –gt expression2

expression1 –ge expression2

expression1 -lt expression2

expression1 –le expression2

!expression

-d file if directory

-e file if exist

-f file if file

-g file if set-group-id

-r file if readable

-s file if size >0

-u file if set-user-id

-w file if writable

-x file if executable String1 = string2

String1 != string 2

-n string (if not empty string)

-z string (if empty string)

need space !

Control Structure
Syntax

if condition

then

 statement

else

 statement

fi

15

#!/bin/sh

echo “Is it morning? Please answer yes or no”

read timeofday

if [$timeofday = “yes”]; then

 echo “Good morning”

else

 echo “Good afternoon”

fi

exit 0

Is it morning? Please answer yes or no

yes

Good morning

Condition Structure

16

#!/bin/sh

echo “Is it morning? Please answer yes or no”

read timeofday

if [$timeofday = “yes”]; then

 echo “Good morning”

elif [$timeofday = “no”]; then

 echo “Good afternoon”

else

 echo “Sorry, $timeofday not recongnized. Enter yes or no”

 exit 1

fi

exit 0

Condition Structure

17

#!/bin/sh

echo “Is it morning? Please answer yes or no”

read timeofday

if [“$timeofday” = “yes”]; then

 echo “Good morning”

elif [$timeofday = “no”]; then

 echo “Good afternoon”

else

 echo “Sorry, $timeofday not recongnized. Enter yes or no”

 exit 1

fi

exit 0

If input “enter” still returns Good morning

Loop Structure

18

Syntax

for variable

do

 statement

done

#!/bin/sh

for foo in bar fud 43

do

 echo $foo

done

exit 0

bar

fud

43

How to output as bar fud 43?

Try change for foo in “bar fud 43”

This is to have space in variable

Loop Structure
 Use wildcard ‘*’

#!/bin/sh

for file in $(ls f*.sh); do

 lpr $file

done

exit 0

Print all f*.sh files

19

Loop Structure

20

Syntax

while condition

do

 statement

done

#!/bin/sh

for foo in 1 2 3 4 5 6 7 8 9 10

do

 echo “here we go again”

done

exit 0

#!/bin/sh

foo = 1

while [“$foo” –le 10]

do

 echo “here we go again”

 foo = $foo(($foo+1))

done

exit 0

Syntax
 until condition

 do

 statement

 done

Note: condition is
Reverse to while
How to re-write
previous sample?

Case Statement
Syntax
case variable in\

 pattern [| pattern] …) statement;;

 pattern [| pattern] …) statement;;

 …

esac

21

#!/bin/sh

echo “Is it morning? Please answer yes or no”

read timeofday

case “$timeofday” in

 yes) echo “Good Morning”;;

 y) echo “Good Morning”;;

 no) echo “Good Afternoon”;;

 n) echo “Good Afternoon”;;

 *) echo “Sorry, answer not recongnized”;;

esac

exit 0

Case Statement
 A much “cleaner” version

22

#!/bin/sh

echo “Is it morning? Please answer yes or no”

read timeofday

case “$timeofday” in

 yes | y | Yes | YES) echo “Good Morning”;;

 n* | N*) echo “Good Afternoon”;;

 *) echo “Sorry, answer not recongnized”;;

esac

exit 0

But this has a problem, if we enter ‘never’ which obeys n*
case and prints “Good Afternoon”

Case Statement

23

#!/bin/sh

echo “Is it morning? Please answer yes or no”

read timeofday

case “$timeofday” in

 yes | y | Yes | YES)

 echo “Good Morning”

 echo “Up bright and early this morning”

 ;;

 [nN]*)

 echo “Good Afternoon”;;

 *)

 echo “Sorry, answer not recongnized”

 echo “Please answer yes of no”

 exit 1

 ;;

esac

exit 0

List
 AND (&&)

 statement1 && statement2 && statement3 …

24

#!/bin/sh

touch file_one

rm –f file_two

if [-f file_one] && echo “Hello” && [-f file_two] && echo “ there”

then

 echo “in if”

else

 echo “in else”

fi

exit 0

Output

Hello

in else

Check if file exist if not then create one

Remove a file

List
 OR (||)

 statement1 || statement2 || statement3 …

25

#!/bin/sh

rm –f file_one

if [-f file_one] || echo “Hello” || echo “ there”

then

 echo “in if”

else

 echo “in else”

fi

exit 0

Output

Hello

in else

Statement Block
 Use multiple statements in the same place

26

get_comfirm && {

 grep –v “$cdcatnum” $stracks_file > $temp_file

 cat $temp_file > $tracks_file

 echo

 add_record_tracks

}

Function
 You can define functions for “structured” scripts
 function_name() {

 statements

 }

27

#!/bin/sh

foo() {

 echo “Function foo is executing”

}

echo “script starting”

foo

echo “script ended”

exit 0

Output

script starting

Function foo is executing

Script ended

You need to define a function before using it
The parameters $*,$@,$#,$1,$2 are replaced by local value
if function is called and return to previous after function is finished

Function

28

#!/bin/sh

sample_text=“global variable”

foo() {

 local sample_text=“local variable”

 echo “Function foo is executing”

 echo $sample_text

}

echo “script starting”

echo $sample_text

foo

echo “script ended”

echo $sample_text

exit 0

define local
variable

Output?

 Check the
scope of
the
variables

Function
 Use return to pass a result

29

#!/bin/sh

yes_or_no() {

 echo “Is your name $* ?”

 while true

 do

 echo –n “Enter yes or no:”

 read x

 case “$x” in

 y | yes) return 0;;

 n | no) return 1;;

 *) echo “Answer yes or

no”

 esac

 done

}

echo “Original parameters are $*”

if yes_or_no “$1”

then

 echo “Hi $1, nice name”

else

 echo “Never mind”

fi

exit 0

 Output

./my_name John Chuang

Original parameters are John Chuang

Is your name John?

Enter yes or no: yes

Hi John, nice name.

